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Summary

� Previous studies have revealed inconsistent correlations between fungal diversity and plant

diversity from local to global scales, and there is a lack of information about the diversity–di-
versity and productivity–diversity relationships for fungi in alpine regions.
� Here we investigated the internal relationships between soil fungal diversity, plant diversity

and productivity across 60 grassland sites on the Tibetan Plateau, using Illumina sequencing

of the internal transcribed spacer 2 (ITS2) region for fungal identification.
� Fungal alpha and beta diversities were best explained by plant alpha and beta diversities,

respectively, when accounting for environmental drivers and geographic distance. The best

ordinary least squares (OLS) multiple regression models, partial least squares regression (PLSR)

and variation partitioning analysis (VPA) indicated that plant richness was positively correlated

with fungal richness. However, no correlation between plant richness and fungal richness was

evident for fungal functional guilds when analyzed individually.
� Plant productivity showed a weaker relationship to fungal diversity which was intercorre-

lated with other factors such as plant diversity, and was thus excluded as a main driver. Our

study points to a predominant effect of plant diversity, along with other factors such as car-

bon : nitrogen (C : N) ratio, soil phosphorus and dissolved organic carbon, on soil fungal rich-

ness.

Introduction

Soil fungi play an important role in decomposition and nutrient
recycling (Setala & McLean, 2004; Voriskova & Baldrian, 2013)
and as mutualists and pathogens of plants and animals (Redman
et al., 2002; Gilbert & Webb, 2007; Parniske, 2008; Dagenais &
Keller, 2009). Until recently, studies of fungal diversity and com-
munity structure have been greatly limited by the problems of
culturing and morphological identification. Novel high-
throughput sequencing (HTS) methods have offered a radically
new perspective on fungal ecology (Lindahl et al., 2013; Balint
et al., 2016; Peay et al., 2016). Depending on geographic scale
and study system, fungal community structure and diversity may
be affected by a wide range of environmental variables such as
temperature (Newsham et al., 2016), precipitation (Tedersoo
et al., 2014), altitude (Bahram et al., 2012), soil pH (Rousk et al.,
2010), nutrient availability (Hanson et al., 2008; He
et al., 2016), and plant community (Barberan et al., 2015; Prober
et al., 2015; Tedersoo et al., 2016).

Notably, spatial scale has a profound influence on the detec-
tion and relative importance of ecological patterns and processes,
as well as the elucidation of the underlying mechanisms (Chase
& Leibold, 2002; Martiny et al., 2006; Sandel & Smith, 2009;
Shi et al., 2015). It has been suggested that correlation of fungal
and plant diversities is stronger at the very broad scales, where
plant and fungal diversities can covary along significant shared
gradients (Hooper et al., 2000), as indicated at the community
level (Prober et al., 2015). In addition, fungal alpha diversity is
expected to increase along broad gradients of plant productivity
based on environmental energy theory (Whittaker, 2006), which
suggests that more abundant resources would facilitate coexis-
tence of more fungal species.

In a global-scale study, Tedersoo et al. (2014) found only a
weak, indirect relationship between soil fungal richness and plant
taxonomic diversity, and no relation to productivity, whereas a
weak correlation between plant productivity and fungal diversity
was identified in global drylands (Delgado-Baquerizo et al.,
2016). It is plausible that on a global scale the fungal community
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is strongly affected by climatic and edaphic predictors, and also by
the historical influences of regional evolution and extinction,
which could disguise the relationships of plant productivity or
plant taxonomic diversity with fungal diversity. Thus, very large-
scale (global or continental scale) studies may not be well suited to
addressing subtle links among soil fungal diversity, plant diversity
and plant productivity. Also, interactions and coevolution among
groups of organisms are considered to occur mainly at local to
regional scales (Gilbert & Webb, 2007; Kembel et al., 2014; Toju
et al., 2014; Peay et al., 2016), and thus the plant diversity effect
may rather be expressed at these scales, rather than global and con-
tinental scales. For example, Peay et al. (2013) found that both
tree and fungal diversities were low in poor sandy soils and rela-
tively high in rich clayey soils in the western Amazon, whereas
Tedersoo et al. (2016) reported greater fungal richness along with
increasing tree species richness in an Estonian old forest site.

In this study, we aimed to disentangle the determinants of soil
fungal diversity on a regional scale by intensive sampling along
strong climatic, edaphic and floristic gradients in grasslands of the
Tibetan Plateau (TP). We postulated the following working
hypotheses. (1) Fungal alpha and beta diversities are strongly
related to plant alpha and beta diversities, respectively, when
accounting for confounding environmental variables (Hooper
et al., 2000; Wardle et al., 2004; Gilbert & Webb, 2007). Here,
fungal alpha diversity is defined as the number of observed opera-
tional taxonomic units (OTUs) at each site (i.e. fungal richness),
while fungal beta diversity is defined as compositional dissimilar-
ity between sites. (2) Fungal alpha diversity is positively related to
plant productivity based on resource abundance and environmen-
tal energy theories (Whittaker, 2006). (3) Composition (rather
than diversity) of fungi and their functional guilds is determined
more by climatic and edaphic predictors than by floristic variables
(such as plant diversity indices and productivity), because the
effects of particular plant species are probably too weak in grass-
land plants as opposed to trees (Tedersoo et al., 2016).

Materials and Methods

Soil sampling

We sampled soil at 60 grassland sites, scattered across a gradient
stretching 815 km north to south and 960 km east to west, in the
northeastern and central TP, situated in both Qinghai Province
and the Tibetan Autonomous Region of China (Supporting
Information Fig. S1). We sampled during the peak vegetation
growing season (July–August) in 2011 to target maximum micro-
bial activity and biomass. The survey area included a substantial
range of vegetation types (alpine meadow, alpine steppe and
desert steppe), climatic conditions (mean annual temperature
(MAT) �5.2 to 4.7°C; mean annual precipitation (MAP) 66–
560 mm) and soil properties (Table S1).

Across the whole transect, sixty 1009 100 m sites were estab-
lished to represent local vegetation types, avoiding sites with visi-
ble disturbance by grazing and anthropogenic activities (Shi et al.,
2012). Within each of the sites, three small plots – each 19 1 m
in size – were randomly placed on the diagonals of the 1-ha site

at least 40 m apart. Within each plot, seven randomly located soil
cores with a diameter of 5 cm were collected. Plant litter was
removed and 5 cm of topsoil was bulked and homogenized in the
field by gently kneading the bag. The soil mainly comprised
organic soil, or top mineral soil in some arid areas. The pretreat-
ment of soil is described in Methods S1.

Vegetation survey

All vascular plant species and individuals were recorded at each of
the 180 plots and summarized at the site level (Table S2). Most
plant species were classified as forbs (44.1%), sedges (29.1%) and
grasses (21.6%), with a low proportion of legumes (5.0%). Plant
species were assigned mycorrhizal status based on the checklist of
Wang & Qiu (2006). We used the normalized difference vegeta-
tion index (NDVI) as a metric for plant productivity. NDVI data
were collected from the moderate resolution imaging spectrora-
diometer (MODIS) aboard NASA’s Terra satellites (https://lad
sweb.nascom.nasa.gov/data/search.html), which were updated
once every 16 d with 250 m resolution. Specifically, we chose the
average NDVI during our sampling dates (also the plant peak
growing season on the TP) as a proxy for plant productivity at
the site level (Paruelo et al., 1997; Pettorelli et al., 2005). This
methodology was previously adopted in the studies by Delgado-
Baquerizo et al. (2016) and Piao et al. (2014). In addition, a
strong positive linear correlation between NDVI and above-
ground biomass at site level was reported across the Tibetan
grasslands (Yang et al., 2008). Compilation of climatic metadata
is described in Method S2.

Measurement of soil properties

All soil parameters were measured at the individual plot level fol-
lowing Jing et al. (2015), and averaged at the site level. Briefly,
soil pH was measured using a pH meter (Thermo Orion-868;
Thermo Orion Co., Waltham, MA, USA) after shaking a soil
water (1 : 5 w/v) suspension. Soil moisture (SM) was measured
gravimetrically. Total carbon (TC) and total nitrogen (TN) were
determined with a carbon�hydrogen�nitrogen (CHN) elemen-
tal analyzer (2400 II CHN elemental analyzer; PerkinElmer, Bos-
ton, MA, USA). Soil total phosphorus (STP) was determined by
the molybdenum blue method with an ultraviolet–visible spec-
trophotometer (UV-2550; Shimadzu, Kyoto, Japan). Soil inor-
ganic carbon (SIC) was calculated based on the content of soil
CaCO3, which was analyzed using a calcimeter (Eijkelkamp,
Giesbeek, the Netherlands). Soil organic carbon (SOC) was cal-
culated as the difference between TC and SIC. Dissolved total
nitrogen (DTN; the sum of ammonium, nitrate and dissolved
organic nitrogen) and dissolved organic carbon (DOC) were ana-
lyzed using a total organic carbon and total nitrogen analyzer
(Shimadzu).

Sequencing and bioinformatics

Total soil DNA from each plot was extracted, stored and ampli-
fied by targeting the fungal internal transcribed spacer 2 (ITS2)
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rDNA region using the primers ITS3 (50-GCATCGATGAAGA
ACGCAGC)/ITS4 (50-TCCTCCGCTTATTGATATGC) (White
et al., 1990) equipped with unique identifier tags. The amplicons
were sequenced using the Illumina MiSeq platform PE250 (Illu-
mina Inc., San Diego, CA, USA). More details of the sequencing
procedure are provided in Methods S3.

Starting with the original paired-end reads on the Illumina
sequencer, we first merged them using FLASH (Magoc & Salzberg,
2011). QIIME v.1.9.0 (Caporaso et al., 2010) and CUTADAPT

v.1.9.1 (https://doi.org/10.14806/ej.17.1.200) were used for qual-
ity filtering, trimming and chimera checking. These procedures
resulted in 11 851 579 high-quality reads after quality filtering
(parameters: minlength = 280; maxambigs = 0, and phred quality
threshold = 30). Then ITSX 1.0.11 (http://microbiology.se/softwa
re/itsx/) was used to remove the flanking large ribosomal subunit
(LSU) and 5.8S genes according to the manual (Bengtsson-Palme
et al., 2013), and the putative chimeric sequences were removed
using a combination of de novo and reference-based chimera
checking, with the flag –non_chimeras_rentention=union (Edgar
et al., 2011). The remaining sequences were then clustered into
operational taxonomic units (OTUs) at 97% similarity threshold
using the USEARCH algorithm (Edgar, 2010). All singletons (clus-
ters of size 1) were removed during the USEARCH clustering pro-
cess, with the flag –g 2, because some singletons represent artifacts
or contaminants, and would have inflated alpha diversity erro-
neously (Kunin et al., 2010; Tedersoo et al., 2010). Taxonomy
was assigned to fungal OTUs using the rdp option in
parallel_assign_taxonomy_rdp.py with minimum confidence of 0.8
(Wang et al., 2007). The UNITE v.7 (http://unite.ut.ee) release for
QIIME served as a reference database (Koljalg et al., 2013). Alto-
gether, 211 OTUs (comprising 128 374 sequences) not assigned to
fungi were removed before subsequent analysis. The final data set
included 11 576 489 fungal sequences covering 14 207 OTUs in 60
sites (minimum 123 753; maximum 341 014; mean 192 941
sequences per site). In order to analyze the alpha and beta diversities
of soil fungi at the same sequencing depth, the data set was subsam-
pled to 123 753 reads per site.

The sequence data associated with this study were submitted
to the European Nucleotide Archive under the accession number
PRJEB16010.

Statistics

All the analyses were performed at the site level (n = 60).
Differences in climatic factors, soil properties and NDVI among
different vegetation types were tested using Games–Howell tests.
Pearson correlation analysis was used to detect multicollinearity
among the 13 environmental variables (Table S3) and to recover
raw trends in the relationships among fungal richness, plant rich-
ness and productivity (Table S4).

We calculated fungal alpha and beta diversities at the same
sequencing depth (123 753 reads per site; Rarefied Fungal OTU-
Table). The observed fungal OTU numbers and plant species
richness were selected to represent fungal and plant alpha diversi-
ties, respectively. Bray–Curtis dissimilarity between each sample
pair was used as a representation of fungal and plant beta

diversities as calculated in the R package VEGAN 2.3-3 (Oksanen
et al., 2016). The community dissimilarity matrices of plants and
soil fungi were linearized using PASSAGE2 (www.passagesoftwa
re.net). To test our first hypothesis, Pearson correlation analysis
and Mantel tests were used to examine the correlation of alpha
and beta diversities between plants and fungi. After identifying
strong individual environmental drivers of plant and fungal
diversity (see later), we used partial Pearson correlation analysis
and partial Mantel tests to further investigate this relationship
after controlling for significant and shared environmental drivers
and geographic distance (Yang et al., 2016). All data were tested
for normality and homogeneity of variance by Kolmogorov–
Smirnov tests and Levene’s tests, respectively, as implemented in
SPSS STATISTICS 20.0 for windows (IBM-SPSS, Chicago, IL,
USA). When necessary, data were logarithm-transformed before
the analysis (see Table S5 for details).

To test the first and second hypotheses, we also used partial
least squares regression (PLSR) to identify the richness�richness
and productivity�richness relationships after accounting for the
other environmental drivers, such as climatic and edaphic vari-
ables. Before setting up PLSR models, all environmental vari-
ables, productivity and alpha diversity indices were standardized
(average = 0 and SD = 1). The ‘optimal’ number of components
was chosen based on the so-called one-sigma heuristic
(Hastie et al., 2008), which was implemented by the function
selectNcomp in the R package PLS 2.6-0. Then we used the func-
tion plsr to perform PLSR analysis and extracted the residuals, as
implemented in the R package PLS 2.6-0. In addition, we carried
out the same implementation (i.e. PLSR) to test the relationships
between the richness of fungal functional guilds and plant rich-
ness/productivity, respectively.

As an alternative method of PLSR, the best ordinary least
squares (OLS) multiple regression models of variation of fungal
richness, plant richness and productivity were selected, respec-
tively. All environmental variables, productivity and alpha diver-
sity indices were standardized (average = 0 and SD = 1) before
the OLS multiple regression analysis. Akaike’s information crite-
rion (AIC) was used to identify the best OLS model, as imple-
mented in the R package MASS 7.3-45. The variance inflation
factor (VIF) was calculated for OLS multiple regression models
using the R package CAR 2.1-2. We used the criterion VIF < 3 to
select suitable variables in the best multiple regression models to
remove strongly multicollinear variables. Variation in the rich-
ness within fungal functional guilds was also analyzed using OLS
multiple regression. In addition, we separately performed a varia-
tion partitioning analysis (VPA) for fungal richness using four
categories, that is, plant richness, productivity, and edaphic and
climatic variables, which enables us to understand the shared and
independent contributions of these four categories (Tedersoo
et al., 2016).

To test the third hypothesis, distance-based linear model mul-
tivariate analysis (DISTLM) was used to determine the relative
effects of spatial, climatic, edaphic and floristic variables on com-
munities of soil fungi and functional guilds (McArdle & Ander-
son, 2001). Here, principal coordinates of neighbor matrices
(PCNM) vectors with significant positive spatial autocorrelation
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were regarded as proxies of spatial variables (Borcard et al.,
2011), and plant productivity, richness, plant NMDS1 and
NMDS2 vectors were regarded as representations of floristic vari-
ables.

Fungal functional guilds were assigned according to Tedersoo
et al. (2014) and Nguyen et al. (2016a). The functional guilds
tested in this study included three major functional groups:
pathogens, saprotrophs and symbionts. Among the last group,
the variation of diversity and communities of arbuscular mycor-
rhizal (AM) and ectomycorrhizal (ECM) fungi were analyzed
separately. For ECM (or AM) fungi, only sites with ECM (or
AM) plants present were included.

Results

In total, 11 576 489 high-quality sequences at 60 sites were clus-
tered into 14 207 fungal OTUs. Of the 14 207 fungal OTUs,
4936 OTUs were assigned to 10 fungal functional guilds, which
accounted for 49.8% of total sequences (see Fig. S3 later). Soil
fungal communities were strongly dominated by Ascomycota,
which accounted for 90.9% of the sequences (Fig. S2). In terms
of the functional composition of fungal communities, sapro-
trophs (30.5%) and plant pathogens (13.6%) were the dominant
functional guilds (Fig. S3).

Diversity–diversity relationship

Fungal richness (alpha diversity) responded significantly to car-
bon : nitrogen (C : N) ratio, plant richness, STP, and DOC,
which collectively explained 46.3% of variation in fungal richness
in the best OLS multiple regression model (the highest R2adj and
lowest AIC; Table 1). PLSR analysis also showed that increasing
plant richness significantly enhanced soil fungal richness when
accounting for the effects of plant productivity and edaphic and
climatic variables (Fig. 1). Fungal beta diversity (compositional
dissimilarity between sites) was most strongly correlated with
plant beta diversity, MAP, C : N ratio and plant productivity
(Fig. 2; Table S6). With increasing plant alpha and beta diversi-
ties, there was a corresponding increase in fungal alpha and beta

diversities, respectively (Fig. 2). The logarithmic regression model
showed a better fit for the relationship between plant and fungal
alpha diversities compared with linear and quadratic models
(Fig. S4).

Nevertheless, there were no shared environmental drivers of
fungal and plant richness in the best OLS multiple regression
models (Table 1), indicating that the richnesses of these two
groups were constrained by different subsets of environmental
predictors. Conversely, Mantel tests indicated that MAP, C : N
ratio and productivity were the three strongest individual envi-
ronmental drivers for both fungal and plant beta diversities
(Table S6). After controlling for these shared environmental
drivers and geographic distance, the strong beta diversity cou-
pling of fungi and plants still persisted (Table S7).

Productivity–diversity relationship

The best OLS multiple regression model indicated that precipita-
tion, SM and temperature were the best predictors of plant pro-
ductivity, altogether explaining 68.7% of variation (Table S8). In
addition, the best predictors in the multiple regression model for
fungal richness (C : N ratio, DOC, plant richness and STP) also
explained 65.9% of variation in plant productivity (adjusted R2

in OLS multiple regression models). Adding productivity to the
fungal richness model did not improve the model fit (not shown).
PLSR analysis also corroborated that plant productivity did not
directly affect soil fungal richness when accounting for the effects
of plant richness and edaphic and climatic variables (Fig. 1). Fur-
ther, the VPA showed that much of the plant productivity effects
on fungal richness were shared with all other variable categories,
such as plant richness and edaphic and climatic variables, and
plant productivity did not have an exclusive effect on soil fungal
richness (Fig. 1).

However, PLSR analysis showed that plant taxonomic richness
significantly increased with increasing plant productivity, when
accounting for the effects of soil fungal richness and edaphic and
climatic variables (Fig. 1). The best OLS multiple regression
model also demonstrated that plant productivity and precipita-
tion were the best predictors of plant richness, altogether explain-
ing 43.5% of variation (Table 1).

Community composition

The community composition of soil fungi was influenced by spa-
tial, climatic, edaphic and floristic variables, as revealed by the
best multivariate model (DISTLM; Table S9). Among 32 vari-
ables (15 PCNM vectors, 11 soil parameters, four floristic vari-
ables and two climatic factors), the 12 significant predictors
taken together explained 43.0% of the variation in fungal com-
position. Specifically, spatial (PCNM1–PCNM6) and climatic
factors (MAP) accumulatively explained 20.7% and 7.9% of the
variation in fungal community, respectively, whereas edaphic
(SM, pH and bulk density) and floristic factors (plant NMDS1
and NMDS2) explained 7.5% and 7.0% of the variation, respec-
tively. For saprotrophs, spatial (PCNM1–PCNM7), climatic
(MAP), edaphic (SM, pH and bulk density) and floristic factors

Table 1 Summary of the best ordinary least squares (OLS) multiple
regression models for the effects of environmental variables on fungal
richness and plant richness

Variable Estimate SE t value P-value VIF

Fungal richness: df = 55; R2
adj = 0.463; SEresid = 0.733; AIC =�32.5

C : N ratio �0.360 0.115 �3.140 0.003 1.446
Plant richness 0.237 0.110 2.158 0.035 1.326
STP 0.318 0.107 2.959 0.005 1.267
DOC �0.279 0.098 �2.839 0.006 1.057

Plant richness: df = 57; R2
adj = 0.435; SEresid = 0.752; AIC =�31.3

MAP 0.415 0.142 2.917 0.005 1.538
Productivity 0.309 0.142 2.169 0.034 1.247

AIC, Akaike’s information criterion; VIF, variance inflation factor; MAP,
mean annual precipitation; STP, soil total phosphorus; DOC, dissolved
organic carbon; C : N, carbon : nitrogen. n = 60 sites.
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(plant NMDS1 and NMDS2) explained 22.1%, 7.2%, 8.3%
and 7.5% of the variation in community composition, respec-
tively. For pathogens, MAP alone explained 8.1% of the varia-
tion. Spatial factors (PCNM1–PCNM2 and PCNM4), edaphic

variables (pH, SM and C : N ratio) and floristic factors (plant
NMDS1, NMDS2 and productivity) explained 11.0%, 18.5%
and 10.7% of the variation in pathogen composition, respec-
tively. For all symbionts taken together, spatial factors

(a) (b)

(d)(c)

Fig. 1 The internal relationships among fungal richness, plant richness and productivity based on (a–c) partial least square regression and (d) variation
partitioning analysis. (a) Relationship between soil fungal richness and plant richness when accounting for the effects of climatic factors, edaphic variables
and plant productivity. (b) Relationship between soil fungal richness and plant productivity when accounting for the effects of climatic factors, edaphic
variables and plant richness. (c) Relationship between plant richness and plant productivity when accounting for the effects of climatic factors, edaphic
variables and soil fungal richness. (d) A Venn diagram of variation partitioning analysis, illustrating the shared and exclusive effects of plant richness,
productivity, edaphic variables and climatic factors on soil fungal richness. Note that the fraction of unexplained variation and values < 1% are not shown
for simplicity. The solid red lines indicate statistical significance for the relationships, while the dashed lines indicate no statistical significance for the
relationships. The shaded areas show the 95% confidence interval of the fit.

Fig. 2 Coupling of fungal and plant diversities across the Tibetan Plateau (TP) (n = 60 sites). Alpha diversity shows linear regression of soil fungal richness
against plant species richness, and beta diversity shows linear regression of the pairwise Bray–Curtis distances for fungal and plant communities. The results
of Pearson correlation analyses are shown, and for beta diversity coupling, Mantel tests also showed a significant positive correlation, with more similar
plant communities having more similar fungal communities (Mantel r = 0.4563; P = 0.001). The shaded areas show the 95% confidence interval of the fit.
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(PCNM1–PCNM3 and PCNM7) explained 24.8% of the varia-
tion in community composition, followed by climatic predictors
(MAP), edaphic variables (SM) and floristic factors (productivity)
which explained 7.0%, 2.9% and 2.3% of community variation,
respectively. For AM fungi, spatial (PCNM1–PCNM3 and
PCNM5) and climatic factors (MAP) explained 25.7% and 4.9%
of the variation in community composition, respectively. For
ECM fungi, spatial (PCNM1–PCNM3, PCNM9 and
PCNM13) and climatic factors (MAT and MAP) explained
29.7% and 9.3% of community variation, respectively.

For taxonomic richness of each functional guild of fungi, dif-
ferent subsets of climatic, edaphic and floristic variables consti-
tuted the strongest predictors (Table 2). Specifically, the richness
of saprotrophs was best explained by C : N ratio, DOC and STP,
which accumulatively explained 30.7% of its variation. C : N
ratio, DOC and STP accumulatively explained 42.3% of the
variation in symbiont richness, while MAT, DOC and STP
explained 34.0% of the variation in pathogen richness. The rich-
ness of AM fungi was best explained by AM plant coverage, SM,
C : N ratio and STP, which accumulatively explained 52.1% of
the variation. The richness of ECM fungi was best explained by
SM, DOC and productivity, which cumulatively explained
48.8% of the variation. Consistently, PLSR models showed that
there were no significant relationships between plant richness and
the taxonomic richness of each functional guild of fungi, whereas
with enhanced AM plant coverage and site productivity, AM and
ECM fungal richnesses increased, respectively (Fig. S5).

Discussion

Diversity begets diversity

The overall fungal alpha and beta diversities were positively
related to plant alpha and beta diversities, respectively, when
accounting for important environmental predictors (Tables S7,
S10). In terms of alpha diversity, the best OLS multiple regres-
sion models accounted for 46.3% and 43.5% of the variation in
fungal and plant richnesses, respectively, and plant richness was
included as one of the strongest predictors of fungal richness in
the best OLS model. The corresponding PLSR model also cor-
roborated that plant richness was significantly positively related
to soil fungal richness when accounting for the effects of plant
productivity and edaphic and climatic variables (Fig. 1). The
observed diversity–diversity relationship was stronger and more
consistent than those observed on a global scale (Tedersoo et al.,
2014; Prober et al., 2015) or local scale (Shen et al., 2014; Bar-
beran et al., 2015). Hiiesalu et al. (2014) also found a strong posi-
tive relationship between AM fungal richness and plant richness,
when accounting for the effects of environmental variables. Site-
level plant richness varied from two to 28 species in our study,
which was a more pronounced gradient than in previous studies,
potentially contributing to the greater plant diversity effect.

In their synthesis, Hooper et al. (2000) found that a positive
correlation between plant and microbial diversities may occur
when both taxa respond similarly to the same environmental
driving factors. Later, this mechanism was corroborated by a
series of empirical studies (Landis et al., 2004; Barberan et al.,
2015; Wang et al., 2016). In our study, the simple Pearson corre-
lation coefficient between fungal richness and plant richness was
0.47 (Table S4), but after controlling for the significant and
shared environmental variables, the partial Pearson correlation
coefficient decreased sharply to 0.286 (Table S10). Accordingly,
the richness�richness R2 was 0.208 in the simple linear regres-
sion model (Table S5), but decreased to 0.075 in the PLSR
model (Fig. 1), which indicated that the plant richness–fungal
richness coupling was partly due to their similar responses to the
shared environmental drivers.

The VPA clearly showed that plant richness had an exclusive
effect on fungal richness after accounting for confounding soil,
climate and productivity effects, which was also corroborated by
the PLSR and OLS multiple regression models (Table 1; Fig. 1).
In addition, in terms of the associations of fungal beta diversity
with other environmental variables, the strongest correlation
existed between fungal beta diversity and plant beta diversity (the
highest Mantel r value), and the positive relationship between
fungal and plant beta diversities was still significant after control-
ling for the shared environmental drivers and geographic distance
(Table S7). This provides strong support for the resource diver-
sity and niche differentiation hypothesis which is applicable to
saprotrophic, pathogenic and mutualistic fungi (Wardle et al.,
2004; Lewis, 2010; Peay et al., 2013; Nguyen et al., 2016b). In
contrast to the overall fungal richness, diversity of saprotrophs,
mycorrhizal symbionts and pathogens was not driven by plant
richness. The corresponding host plant cover and plant

Table 2 Summary of the best ordinary least squares (OLS) multiple
regression models for the effects of environmental variables on the
richness of functional guilds

Variable Estimate SE t value P-value VIF

Saprotrophs: df = 56; R2
adj = 0.307; SEresid = 0.833; AIC =�18.1

C : N ratio �0.343 0.121 �2.846 0.006 1.238
DOC �0.361 0.111 �3.239 0.002 1.054
STP 0.308 0.120 2.555 0.013 1.234

Symbionts: df = 56; R2
adj = 0.423; SEresid = 0.760; AIC =�29.1

C : N ratio �0.364 0.110 �3.304 0.002 1.238
DOC �0.320 0.102 �3.150 0.003 1.054
STP 0.428 0.110 3.892 < 0.001 1.234

Pathogens: df = 56; R2
adj = 0.340; SEresid = 0.813; AIC =�21.1

MAT 0.257 0.119 2.160 0.035 1.263
DOC �0.386 0.109 �3.530 < 0.001 1.068
STP 0.343 0.121 2.839 0.006 1.301

AM fungi: df = 53; R2
adj = 0.521; SEresid = 0.692; AIC =�37.9

AM plant coverage 0.347 0.105 3.322 0.002 1.301
SM (loge) �0.489 0.130 �3.775 < 0.001 1.999
C : N ratio �0.371 0.107 �3.471 0.001 1.358
STP 0.537 0.117 4.594 < 0.001 1.626

ECM fungi: df = 34; R2
adj = 0.488; SEresid = 0.716; AIC =�21.7

SM (loge) 0.470 0.140 3.362 0.002 1.412
DOC �0.471 0.126 �3.725 < 0.001 1.154
Productivity 0.385 0.132 2.907 0.006 1.226

AIC, Akaike’s information criterion; ECM, ectomycorrhizal; VIF, variance
inflation factor; C : N, carbon : nitrogen; DOC, dissolved organic carbon;
STP, soil total phosphorus; MAT, mean annual temperature; AM,
arbuscular mycorrhizal; SM, soil moisture; loge, natural log transformation.
n = 60 sites.
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productivity (instead of plant richness) were among the strongest
predictors of the richness of AM and EcM fungi, respectively, in
the best OLS multiple regression models and PLSR models
(Table 2; Fig. S5). These results point to the importance of
resource quantity in determining the richness of mycorrhizal
fungi.

The strong effect of plant richness on total fungal richness per
se is of great ecological importance, highlighting that even small
individuals of grassland plant species may generate complemen-
tary belowground niches by providing differential qualities of
root environment, exudates, and root and leaf litter (Waring
et al., 2015), which may support greater diversity of various
guilds of biotrophic and saprotrophic fungi. In addition, genetic
compatibility between fungi and host plants is another potential
mechanism for diversity effects in biotrophic fungi (Gilbert &
Webb, 2007; Saikkonen et al., 2010). Although this relationship
is cumulative rather than linear (Fig. S4), it demonstrates that
aboveground plant diversity may represent a good proxy for con-
servation planning with respect to belowground organisms.

Of multiple tested variables, there was a lack of shared predic-
tors of fungal and plant richnesses in the best OLS multiple
regression models (Table 1), which suggested that the alpha
diversity of plants and soil fungi is constrained by the different
subsets of environmental predictors. MAP was the strongest pre-
dictor of plant richness, individually explaining 39.8% of the
variation in this study. Previous studies also determined water
availability to be the strongest predictor for plant richness across
the TP (Ma et al., 2010; Yan et al., 2013; Wu et al., 2014), and
on a global scale (Kreft & Jetz, 2007). Soil C : N ratio was the
strongest predictor of fungal richness, individually explaining
29.2% of the variation. Recently, Newsham et al. (2016) also
found that soil C : N ratio was one of the strongest predictors of
fungal Chao1 richness in the maritime Antarctic.

Productivity–diversity relationship

Species number often increases with an increase in total available
energy, which is the so-called species-energy theory (Whittaker,
2006). Although the species-energy theory is widely accepted for
plants and animals (Hawkins et al., 2003; Phillips et al., 2010), a
few empirical studies have demonstrated its applicability in fun-
gal ecology (Schmit, 2005; Yang et al., 2016). In our study, soil
fungal richness was significantly positively related to plant pro-
ductivity in the simple linear regression models (Table S5); how-
ever, we did not find a significant relationship between fungal
richness and plant productivity in the PLSR and OLS multiple
regression models (Table 1; Fig. 1). Furthermore, while the VPA
showed that plant productivity explained c. 30% of variation of
soil fungal richness, all the effects were shared with other variable
categories, such as plant richness, soil and climate. These results
indicated that there is a lack of direct correlation between soil
fungal richness and plant productivity per se, and that productiv-
ity and other environmental drivers’ effects on fungal richness
may confound each other and have a synergistic effect. For exam-
ple, Maestre et al. (2015) found that plant coverage indirectly
affected soil fungal diversity by enhancing soil organic carbon in

global drylands. It is possible that plant productivity may affect
soil fungal richness indirectly through the modification of the soil
C : N ratio, which was one of the strongest predictors of fungal
richness (Table 1). Related to productivity, soil C : N ratio repre-
sents a proxy for nutrient availability (Cleveland & Liptzin,
2007) that may constrain build-up of fungal biomass and the
activity of exoenzymes (Prevost-Boure et al., 2011; Drake et al.,
2013; Grosso et al., 2016). Soil C : N ratio varied by an order of
magnitude in our study, and increasing C : N ratio had a strong
negative effect on the richness of fungi and all functional groups,
except pathogens and ECM fungi (Tables 1, 2).

It is also suggested that plant richness and productivity effects
on fungal richness may confound each other, given that c. 20%
of fungal richness variation was attributed to the combined effects
of plant richness and productivity (Fig. 1). With enhanced plant
productivity, plant richness significantly increased in the PLSR
and OLS multiple regression models, suggesting the direct effect
of productivity on plant richness per se. Similarly, in light of
the results of their critical meta-analyses, Gillman & Wright
(2006) proposed that almost all the productivity–plant species
richness relationships were positive at the regional scale. Taken
together, our study also indicated that the productivity–diversity
relationship is inconsistent for plants and soil fungi in the same
region, although they are strongly correlated with respect to
diversity.

Likewise, productivity strongly affected the richness of ECM
fungi in the PLSR and OLS multiple regression models (Table 2;
Fig. S5), which could be attributed to the increasing relative
abundance of ECM Kobresia spp. in more productive sites. AM
plant coverage, an alternative proxy for productivity, was the
strongest predictor of AM fungal richness (Fig. S5), suggesting
that both mycorrhizal guilds are predominantly affected by host
plant growth in grasslands of the TP. This also confirmed that
plant correlates with soil fungal diversity were to a large extent
guild-specific (Peay et al., 2013; Nguyen et al., 2016b; Tedersoo
et al., 2016).

Community composition

Surveys of fungal and plant biodiversity have seldom addressed
the community composition of plants, fungi and specific func-
tional guilds at the same time. In agreement with Tedersoo et al.
(2016), we found that the community composition of the various
different guilds of soil fungi was driven by various spatial, cli-
matic, edaphic and floristic variables that differed in relative
importance among functional groups. The community composi-
tion of plants was partly driven by similar environmental predic-
tors, such as spatial (PCNM1–PCNM4), climatic (MAP) and
edaphic factors (SM and bulk density), which also strongly
affected the community composition of soil fungi and their func-
tional guilds (Tables S9, S11). Since nearly all of the significant
predictors we found here have been shown to be biologically
important in some studies, the combination of deep sequencing
and 60 sampling units provides ample material for a powerful
multivariate analysis that is able to detect responses as weak as
1.7% of explained variation in fungal community composition.
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Consistent with the third hypothesis, the composition of the
total fungal community was more strongly determined by spatial,
climatic and edaphic predictors, which accumulatively explained
36.1% of the variation, compared with 7.0% of the variation
explained by floristic variables. Although individual tree species
effects are stronger in forest ecosystems, Tedersoo et al. (2016)
found that the composition of the forest soil fungal community
was more strongly driven by spatial and edaphic variables than by
floristic variables. Here, MAP was the strongest individual driver
of the community composition of total fungi and soil sapro-
trophs, which is consistent with previous studies on the TP
(Zhang et al., 2016) and elsewhere (Bahram et al., 2012; Shi
et al., 2014; Timling et al., 2014).

Conclusions

In contrast to previous findings at the global scale (Tedersoo
et al., 2014; Prober et al., 2015), in this regional-scale study there
were strong and consistent associations between plants and soil
fungi with respect to alpha and beta diversity, after accounting
for a suite of environmental predictors and plant productivity
effects. This demonstrates the potential importance of such cou-
pling in maintaining biological diversity – even though the direc-
tions of cause and effect between plant and fungal diversities were
not discernible. Additionally, aboveground plant diversity may
represent a good proxy of soil fungal resources for use in regional
conservation planning. Plant richness was significantly positively
related to plant productivity, whereas fungal richness did not vary
in relation to productivity, after accounting for the effects of
plant richness and edaphic and climatic variables. This suggests
that the productivity–diversity relationship is complex and shows
different patterns for aboveground plants and belowground
organisms. Our results also highlight the importance of recording
soil and floristic variables, as well as the choice of suitable statisti-
cal methods. Further local- to regional-scale studies in other
ecosystems and higher productivity habitats are required to deter-
mine whether the findings of this study are more generally appli-
cable to natural ecosystems.
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