
Trends
The concentration of Mn, an essential
element for plants, varies in soil solu-
tion from submicromolar to hundreds
of micromolar across the plant growth
period as a function of soil conditions.

Recent studies have revealed that
some plant species, such as rice, are
able to deal with these wide fluctua-
tions of Mn in the environment by dif-
ferential regulation of transporter
expression.
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Plants only require small amounts of manganese (Mn) for healthy growth, but
Mn concentrations in soil solution vary from sub-micromolar to hundreds of
micromolar across the growth period. Therefore, plantsmust deal with largeMn
concentration fluctuations, but the molecular mechanisms underlying how
plants cope with low and high Mn concentrations are poorly understood. In
this Opinion we discuss the role of Mn transporters in the uptake, distribution,
and detoxification of Mn in response to changes in Mn concentrations through
their regulation at the transcriptional and protein levels, mainly focusing on rice,
an Mn-tolerant and �accumulating species. We also propose mechanisms
involved in the hyperaccumulation of Mn and future prospects for studying
this specific trait.
OsNramp3 localized at the nodes
responds to different Mn concentra-
tions. It functions as a switch in
response to changes in Mn levels.

Other transporters are also implicated
in dealing with changes in Mn levels in
different plant species, especially Mn-
hyperaccumulators, but their exact
roles remain to be examined.
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Plants Accumulate More Mn Than They Require
Manganese (Mn) was demonstrated to be essential for plants in 1922 by McHargue [1] and for
animals in 1931 by Kemmerer et al. [2]. In plants, Mn is involved in processes including
photosynthesis, respiration, protein synthesis, and hormone activation [3]. For example,
Mn plays an important role in the oxygen-evolving photosynthetic machinery, catalyzing the
water-splitting reaction in photosystem II (PSII) [4]. Mn is also involved in the activation of more
than 30 enzymes. Furthermore, a few enzymes such as Mn superoxide dismutase (MnSOD)
contain Mn [5]. Although plants only require about 20–40 mg Mn kg�1

[336_TD$DIFF] of dry weight for its
various functions [6,7], most plants contain 30–500 mg Mn kg�1 dry weight, which is higher
than the plant requirement [8]. This could be attributed to variable Mn concentrations in soil
solutions and poor regulation of Mn uptake, as discussed below.

When the Mn concentration in the young expanded leaf blade is lower than 10–20 mg kg�1,
plants develop Mn-deficiency symptoms regardless of plant species or cultivars. The most
visible Mn-deficiency symptom is interveinal chlorosis on young leaves [9]. By contrast, when
Mn is present in excess, it is toxic to plants. Toxicity symptoms are characterized by brown
spots on the mature leaves as a result of increased peroxidase activity mediated by phenolics
and Mn in the apoplast (see Glossary) [10,11]. However, in contrast to the critical Mn
concentration for Mn deficiency, the critical toxicity concentration of Mn varies widely among
plant species. For example, maize (Zea mays) growth was inhibited at 200 mg Mn kg�1

[337_TD$DIFF], while
sunflower growth was only inhibited at 5300 mg Mn kg�1 [12], and some Mn-hyperaccumu-
lators even accumulate much higher Mn levels, as described below. This Opinion paper
discusses the role of Mn transporters in the uptake, distribution, and detoxification of Mn,
focusing mainly on rice (Oryza sativa) where a node-localized transporter (OsNramp3;
natural resistance associated macrophage protein) plays an important role in dealing
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Glossary
Apoplast: a space outside the
plasma membrane, which is formed
by the continuum of cell walls of
adjacent cells as well as the
extracellular spaces, forming a tissue
level compartment comparable to the
symplast. The apoplast is important
for plant interactions with its
environment.
Casparian band: a band of cell-wall
material deposited in the radial and
transverse walls of the root
exodermis and/or endodermis. It is
made of lignin and constitutes a
physical barrier that prevents water
and solutes from freely entering into
the cortex (aerenchyma)/stele as well
as from leaking back out to the
rhizosphere/cortex.
Cation diffusion facilitator (CDF):
a family of integral membrane
proteins that are widespread in
bacteria, fungi, plants, and animals.
They transport divalent metals ion
such as Co2+, Cd2+, Zn2+, Ni2+, Mn2
+, and Cu2+. CDF proteins function
as efflux transporters, and therefore
increases tolerance to heavy metals.
However, some members are
implicated in ion acquisition. In plants
the metal tolerance protein (MTP)
belongs to the CDF family and is
involved in tolerance, translocation,
and homeostasis of cations (e.g.,
Mn2+, Zn2+, Cd2+).
Cation exchanger (CAX): a family
of transmembrane proteins that
move ions such as Ca2+ across a
plasma membrane against their
concentration gradient as an efflux
transporter.
Diffusevascular bundles (DVBs):
vascular bundles surrounding the
EVBs in nodes. They start at the
node and are connected to the
upper two nodes or panicle.
Enlarged vascular bundles
(EVBs): vascular bundles having a
extensive xylem area in the node.
They come from the two lower
nodes and are connected to the leaf
attached to the node.
Natural resistance-associated
macrophage protein (Nramp): a
divalent cation influx transporter
family associated with the uptake of
transition metals ions such as Cu2+,
Fe2+, Mn2+, and Zn2+.
Node: a junction region of leaves
and branches to the stem. In
graminaceous plants, each node has
a leaf that is connected via the leaf
sheath, a tiller or a tiller bud, and
with large changes in environmental Mn concentrations through the regulation of protein
expression levels.

Wide Fluctuations of Mn Concentrations in Soil Solution
Mn is the 11th most common element and the second most prevalent transition metal after
iron in the Earth’s crust. The total Mn in soils varies between 20 and 3000 mg kg�1 with an
average of�600 mg kg�1. In soil solutions, divalent Mn2+ is the most available form for plants,
but its concentration varies between 0.1 and 800 mM depending on soil conditions [13,14].
The Mn2+ concentration in soil solution is centrally affected by soil pH and redox conditions
[15]. The concentration of Mn2+ decreases 100-fold for each unit increase in pH [16].
Therefore, Mn deficiency often occurs in alkaline soils, which comprise 30% of arable land,
while Mn toxicity is one of the factors limiting crop production in acid soils that comprise 30–
40% of arable land [17]. Furthermore, excess water in soil triggers a progressive decrease in
soil redox potential, thus increasing the concentration of Mn2+ in soil solution [18]. For this
reason Mn toxicity also occurs in poorly drained soils [19]. Because soil conditions are very
changeable temporally and spatially, plants must cope with these wide fluctuations of Mn
concentrations in soil solution during the growth period. This is especially important for rice
because this species is cultivated under both upland and flooded conditions over the whole
growth period. Recent studies have revealed that rice has developed strategies to deal with
varying Mn concentrations in the environment by regulating Mn transporter expression and
activity.

Acquisition of Mn from Soil in Response to Low Mn Availability
Plants have developed several strategies to acquireMn, which is essential for their growth, from
soil with low Mn availability. The best-studied mechanisms involve release of H+

[338_TD$DIFF], reductants,
and Mn-binding ligands [9,13]. However, the genes involved in these processes have not been
identified. Transporters for aluminium (Al)-induced secretion of organic acid anions have been
identified [20], but it is unknown whether similar transporters are involved in Mn deficiency-
induced secretion of organic acid anions. Recently, leaf Mn accumulation was proposed to be a
screening parameter for phosphate (P)-acquisition efficiency [21]. This is based on the finding
that some plant species secrete organic acid anions from the roots in response to P deficiency,
which also mobilize Mn in addition to P.

Mn Uptake in Rice
Under flooded conditions, the concentrations of both Fe2+ and Mn2+ dramatically increase
because of oxygen depletion, but rice plants preferentially accumulate more Mn than Fe. This is
because oxidation of Mn2+ requires a higher redox potential than for Fe2+ [22]. Oxygen released
from the root surface is sufficient to oxidize Fe2+, but not Mn2+ [23,24].

Mn uptake by rice increases with increasing external Mn concentrations in the 0.5 mM to 500
mM range without affecting plant growth [25,26]. This high uptake exceeds the requirement of
rice for Mn, indicating poor regulation of Mn uptake in this species. Two different types of
transporters have so far been identified, OsNramp5 and OsMTP9, that are involved in Mn
uptake in rice [27,28]. Both OsNramp5 and OsMTP9 are located at the exodermis and
endodermis of mature root zones, but show different polarities; OsNramp5 is at the distal
side whereas OsMTP9 at the proximal side of the same cell [27,28]. Therefore, OsNramp5
functions as an influx transporter and is responsible for uptake of Mn from the external milieu
(soil solution) to the exodermal cells, as well as from apoplastic solution in aerenchyma to
endodermal cells, while OsMTP9 releases Mn from the exodermal and endodermal cells as an
efflux transporter towards the stele (Figure 1). This uptake system is very similar to that of silicon
(Si, in the form of silicic acids) mediated by OsLsi1 and OsLsi2 [29]. A recent mathematical
modeling study showed that Casparian bands, localized at the exodermis and endodermis,
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crown roots or primordia. It plays an
important role in the distribution of
mineral elements.
Symplast: cytoplasm shared with
neighboring cells that are connected
via plasmodesmata through which
water and low molecular weight
solutes can freely diffuse.
Transporter: membrane proteins
involved in transport of many
molecules including mineral
elements. They help molecules to
cross biological membranes. In
plants, there are many different types
of transporters localized at the
plasma membrane, vacuolar
membrane, and membranes of many
organelles.
Zn-regulated transporter/Fe-
regulated transporter-like protein
(ZIP): influx transporter proteins
capable of transporting a variety of
cations including Cd2+, Fe2+, Mn2+,
and Zn2+.
are very important for efficient Si uptake [30], it stands to reason that the bands may also be
important for Mn uptake in rice.

Mn is also required for cell division and cell elongation in root tips. Mn seems not to be taken up
by the root tips directly but is transported to root tips from the upper parts of the plant via the
phloem. Mn cooperatively taken up by OsNramp5/OsMTP9 in the mature root regions is
translocated up through the xylem. At the basal nodes, Mn is transferred by OsNramp3 from
xylem to phloem, followed by distribution to the root tips and young leaves [31]. This is
supported by the fact that knocking out OsNramp3 resulted in brown-colored root tips, a
typical sign of Mn deficiency [31].

The transcription of the genes encoding OsNramp5 andOsMTP9 is not affected by external Mn
concentrations [27,28]. This constitutive expression indicates poor regulation of Mn uptake at
the transcriptional level and differs from that of other nutrient transporters. The expression of
most nutrient transporter genes is induced by nutrient deficiency, but suppressed by nutrient
excess to maintain their homeostasis [32]. For example, the expression of IRT1, a Fe2+

transporter gene, was upregulated under Fe-limited conditions [33]. At the protein level,
OsMTP9 and OsNramp5 were largely unaffected by high Mn levels ([28], J.F.M. et al., unpub-
lished). This result also differs to the turnover of other transporters such as BOR1 protein, a
boron transporter that is rapidly degraded in response to high B [34].

MostMn taken up is translocated to the shoots, but a fraction will be sequestrated into vacuoles
of the root cells. This sequestration is mediated by OsMTP8.1 in rice, which is also expressed in
the roots in addition to the shoots (Figure 1), but the expression of OsMTP8.1 is also not
affected by environmental Mn changes [26].

Mn Uptake in Other Plant Species
In Arabidopsis (A. thaliana), Mn uptake is mediated by AtNramp1, a homolog of OsNramp5 but
belonging to a different subgroup [35]. In contrast to rice, the expression of AtNramp1 in
Arabidopsis is moderately upregulated by Mn deficiency [35]. Two Arabidopsis ZIP (Zn-
regulated transporter/Fe-regulated transporter-like protein) family members, AtZIP1
and AtZIP2, are implicated in the transport of Mn in root stellar cells [36]. Both AtZIP1 and
AtZIP2 are expressed in the root stele, but AtZIP1 is localized to the tonoplast whereas AtZIP2 is
localized to the plasma membrane. AtZIP1 is proposed to remobilize Mn from vacuoles to the
cytoplasm, whereas AtZIP2 may mediate Mn uptake into root stellar cells. However, the
expression of both AtZIP1 and AtZIP2 is largely unaffected by Mn deficiency [36]. Owing to
lack of spatial tissue and cellular localization information of Mn transporters, our understanding
of the uptake system of Mn in Arabidopsis is not as complete as in rice (Figure 1). In barley
(Hordeum vulgare) a ZIP family member, HvIRT1, is implicated in Mn uptake [37]. The
expression ofHvIRT1 is alsomoderately enhanced byMn deficiency [37]. Recently, HvNramp5,
a homolog of rice OsNramp5, was reported to be involved in Mn uptake in barley [38].
HvNramp5 is localized to the plasma membrane of the epidermal cells of the root tips. In
contrast to HvIRT1, its expression is only slightly upregulated by Fe deficiency, but not by Mn
deficiency. These differences in response to environmental Mn changes between different
species may be attributed to distinct root structures of different species (e.g., monocot versus
dicot), Mn uptake ability, and growth conditions (dry soil growth versus flooded growth). Overall,
the response of Mn transporter genes to Mn deficiency is mild compared to that in response to
Fe deficiency.

Compared to barley and Arabidopsis, which are usually grown under upland soil conditions,
rice is predominantly grown under flooded conditions. Therefore, fluctuations of Mn levels in soil
solution during the growth period are much larger for rice than for barley and Arabidopsis.
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Figure 1. Uptake System of Mn in Rice in Response to Fluctuation in Mn Concentrations. In rice, Mn uptake is mediated by at least two different
transporters, OsNramp5 and OsMTP9, that are localized at the distal and proximal sides, respectively, of the same exodermis and endodermis in mature root zones.
Part of Mn taken up is sequestered by OsMTP8.1 localized at the tonoplast. These transporters are largely unresponsive to fluctuations in Mn concentrations in the
environments at both transcriptional and protein level. Mn in the root tips comes from the upper plant through phloem transport, and is distributed by OsNramp3 at the
basal nodes. In plant species other than rice, transporters for Mn uptake have also been reported, but their spatial tissue and cellular localizations remain unknown, and
thus the uptake system for Mn is not yet fully understood.
In fact, barley is much less tolerant to high Mn levels and accumulates much less Mn in the
shoots than does rice [39]. Rice can tolerate up to 5000 mg Mn kg�1

[339_TD$DIFF] in the shoots without
showing any symptoms of toxicity, whereasMn concentrations of >150 mgMn kg�1 lead toMn
toxicity symptoms in barley [40]. However, rice is able to deal with varying Mn concentrations in
the environment through a Mn transporter localized at the node for distribution, as described
below.

Altered Distribution of Mn in Response to Environmental Changes in Mn
Levels
In rice, after uptake by the roots, most Mn is translocated from the roots to the shoots and then
delivered to various tissues. Recent studies show that the node, a junction of vasculatures
connecting the leaf, stem, and panicle, plays an important role in distribution of mineral
elements in gramineous plants such as rice and barley [41]. Nodes have complex but well-
organized vascular bundles that are connected to each other and that are responsible for
selective distribution of mineral elements. In rice, a member of the Nramp family, OsNramp3,
was found to be involved in Mn distribution [31]. OsNramp3 is a plasma membrane-localized
transporter specific for Mn [31]. It is highly expressed in the nodes, and is localized in xylem
transfer cells and other parenchyma cells of enlarged vascular bundles (EVBs), as well as in
the phloem region of diffuse vascular bundles ([341_TD$DIFF]DVBs) in the basal nodes and upper nodes
(Figure 2). Interestingly, OsNramp3mRNA levels are not affected byMn concentrations, but the
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Figure 2. Node-Mediated Regulation of Mn Distribution in Response to Changing MnConcentrations in Rice. OsNramp3 localized in the nodes functions
as a switch for distributing Mn which turns the protein on or off in response to fluctuating Mn concentrations. (A) Under Mn-limited conditions OsNramp3 mediates
preferential distribution of Mn to developing tissues, including young leaves, crown root tips, and panicles. (B) By contrast, under Mn-excess conditions, OsNramp3 is
rapidly internalized and degraded to avoid Mn toxicity caused by overaccumulation in active developing tissues, andMn is then delivered to old leaves in a transpiration-
dependent manner.
protein is rapidly degraded within a few hours in response to high Mn levels (Figure 2).
Phenotypic analysis using knockout lines showed that, at low Mn concentrations, OsNramp3
preferentially transports Mn to young leaves and panicles; however, at high Mn concentrations
Mn is delivered to mature tissues. Therefore, OsNramp3 in rice nodes functions as a switch for
Mn distribution, which turns on or off the protein in response to fluctuating Mn concentrations.
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[342_TD$DIFF]These findings indicate that rice deals with variable Mn concentrations by regulating Mn
distribution through post-translational regulation of OsNramp3-mediated transport rather than
via Mn uptake. This is the first example illustrating the response of plants to environmental Mn
changes through regulation of the transporter involved in Mn distribution in the nodes. It will be
interesting to examine whether a similar regulatory mechanism is present in other plant species.

A different type of transporter in rice, OsYSL2, is also implicated in long-distance transport and
distribution of Mn [42]. OsYSL2 is a member of the yellow stripe-like family and transports
Mn2 [340_TD$DIFF]+–nicotianamine as well as Fe2+–nicotianamine complexes [43]. This transporter is mainly
expressed in leaves, flowers, and developing seeds, but not in roots. Expression of OsYSL2 is
induced by Fe deficiency, but its response to Mn deficiency or excess has not been examined.
Overexpression ofOsYSL2 resulted in increasedMn levels in the grain [42]. Because OsYSL2 is
localized at the phloem companion cells, it is probably involved in phloem loading of
Mn–nicotianamine, although its exact role in rice needs to be further investigated.

Detoxification of Mn in Above-Ground Parts
Plants must detoxify Mn levels which exceed the requirement for healthy growth. Chelation and
compartmentalization of Mn in the vacuoles, endoplasmic reticulum (ER), or Golgi play crucial
roles in Mn tolerance [44]. Two transporters (OsYSL6 and OsMTP8.1) are involved in Mn
detoxification in rice leaves (Figure 3). OsYSL6 transports Mn–nicotianamine complexes [25]
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Figure 3. Mn Transporters for Detoxification and Trafficking. OsYSL6 has been implicated in transport of Mn–
nicotianamine complexes from apoplast to symplast in rice leaves. Mn in the cytosol is subsequently sequestered by
OsMTP8.1/AtMTP8 in rice/Arabidopsis, by CAX at the tonoplast, and by AtECA3 to the endosome/prevacuolar compart-
ments. AtNramp3/4 is responsible for export of Mn from the vacuoles, AtMTP11 is involved in the secretory pathway, and
AtPAM71 is required for efficient Mn uptake into the thylakoids. Mn is also present in various organelles, but the influx
(square) and efflux (circle) transporters have not been identified. Abbreviation: ER, endoplasmic reticulum.
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Outstanding Questions
Under submerged condition, both Mn
and Fe availability are greatly increased
because of reducing anaerobic condi-
tions, but why does rice preferentially
accumulate more Mn than Fe?

Why do most plants accumulate
higher levels of Mn than they need
for their growth?

Mn concentrations in soil solution vary
by a factor of 100 over the growth
period, but how does rice deal with
this large fluctuation?

Some plant species accumulate more
than 10 000 mg Mn g�1 in the shoots
without showing any symptoms of tox-
icity, what mechanisms underlie inter-
nal detoxification of Mn?
while OsMTP8.1 transports Mn2+ [26]. The subcellular localization of OsYSL6 is not known, but
it has been suggested to be localized to the plasmamembrane based on phenotypic analysis of
knockout lines [25]. By contrast, OsMTP8.1, a member of the cation diffusion facilitator
(CDF) family, is localized to the tonoplast [26]. Knockout of either OsYSL6 or OsMTP8.1
resulted in increased sensitivity to high Mn concentrations [25,26]. Furthermore, the OsYSL6
mutant shows increased Mn concentrations in leaf apoplasts, but decreased Mn concen-
trations in symplasts. Therefore, in rice OsYSL6 seems to transport Mn–nicotianamine from
apoplast to symplast, whereas OsMTP8.1 is responsible for sequestration of Mn into the
vacuoles (Figure 3).

The expression of OsYSL6 did not respond to low (0.05 mM) or high Mn (1000 mM), showing
constitutive expression. However, expression levels are higher in older leaves with high Mn
concentrations than in young leaves with low Mn concentrations [25]. By contrast, the
expression level of OsMTP8.1 mRNA and its encoding protein level are slightly enhanced
by high Mn concentrations [26]. These findings suggest that the transporters involved in Mn
detoxification show only a limited response to changing Mn concentrations.

In addition to OsMTP8.1, other CDF members such as ShMTP1 in Stylosanthes hamata and
AtMTP11 in Arabidopsis also confer Mn tolerance. ShMTP1 is localized to the tonoplast [344_TD$DIFF]like
OsMTP8.1 [45], while AtMTP11 is targeted to prevacuolar compartments or Golgi-like com-
partments [46,47] (Figure 3). They are also involved in sequestration of Mn into vacuoles or the
Golgi for detoxification. Recently, AtMTP8 was identified as a vacuolar Mn transporter that
could counter Mn toxicity in Arabidopsis [48]. Furthermore, there is a strong link between the
regulation of this transporter and Fe deficiency. CsMTP8 in cucumber is also involved in Mn
tolerance [49]. Although CsMTP8 is also localized to the tonoplast, unlike OsMTP8.1 which is
mainly expressed in the shoots, CsMTP8 is highly expressed in the roots. Furthermore, its
expression is upregulated by Mn excess [49]. It seems that most MTP members have similar
functions in sequestering Mn into organelles, but have different roles depending on the plant
species.

Some members of cation exchanger ( [345_TD$DIFF]CAX) protein family have also been implicated in
vacuolar sequestration of Mn. Rice OsCAX1 and OsCAX3 proteins conferred Mn tolerance
to yeast cells [50]. Expression of AtCAX2 from Arabidopsis in tobacco (Nicotiana tabacum)
enables more Mn to accumulate in vacuoles and increases Mn tolerance compared to the
wild type [51]. However, their exact role in planta remains unclear. CAX transporters have
low affinity for Mn [52], and therefore CAX proteins may only play a role at high Mn
concentrations [53]. By contrast, AtNramp3 and AtNramp4 localized at the tonoplast
are necessary for Mn export from the vacuole into the mesophyll cells of adult plant leaves
[54]. Their protein level is not affected by Mn supply. [346_TD$DIFF]On the other hand, it is well known that
some plant species, termed Mn hyperaccumulators, are able to accumulate more than 10
000 mg kg�1

[343_TD$DIFF] Mn of dry weight in their above-ground tissues without evident toxicity. For
example, several Gossia species accumulate 10 000–35 000 mg Mn kg�1 in the leaves [55],
but little is known about the molecular mechanisms underlying Mn hyperaccumulation [56].
Both proteins and organic acids (e.g., tartaric acid) are suggested to play important roles in
detoxification in Eucalyptus grandis � E. urophylla [57], but their exact roles need to be
further confirmed.

Concluding Remarks and Future Perspectives
Over the past 10 years great progress has been made, especially in rice, in understanding plant
responses to changes in environmental Mn concentrations. However, our understanding
of many aspects of Mn transport and homeostasis remains incomplete (see Outstanding
Questions). Various transporter families including Nramp, YSL, ZIP, CAX, CCX (calcium cation
Trends in Plant Science, March 2017, Vol. 22, No. 3 221



exchangers), CDF/MTP, VIT (vacuolar iron transporter), and P-type ATPases have been
implicated in Mn uptake and transport within plants [53,58], but the exact roles of these
transporters in planta are unknown, although some of them have been characterized in
heterologous systems (e.g., yeast, Arabidopsis). One must be cautious in the interpretation
of heterologous results because the ability of these proteins to transport a particular cation does
not necessarily mean that this mode of cation transport is physiologically relevant for the plants
[53]. At the organ and tissue level, Mn transporters have not so far been identified for xylem
loading and unloading, phloem loading and unloading. Efflux transporters for intervascular
transfer in the nodes [348_TD$DIFF]and transporters for loading to the seeds [349_TD$DIFF]also remain to be identified. At
the cellular level, although Mn is found in many organelles including the chloroplast, mitochon-
dria, Golgi apparatus, and vacuoles [53], most transporters for transporting Mn in or out these
organelles remain to be identified, except for some transporters such as AtECA3 at endosome/
prevacuolar compartments [59], AtMTP11 in the Golgi apparatus [47], and PAM71 in the
thylakoids [60]. The response of these elusive transporters to environmental Mn changes also
need to be investigated in the future.

At least 22 Mn hyperaccumulator species have been identified so far [61]. However, the
mechanisms underlying Mn hyperaccumulation and their responses to changing Mn levels
in the environment are poorly understood. Transporters for uptake, translocation, distribution,
and internal detoxification are necessary for Mn hyperaccumulation, but none of these has been
identified. [350_TD$DIFF]The distribution of Mn in the hyperaccumulators at both the cellular and organ levels
remains poorly understood[351_TD$DIFF]. Mn in some Mn hyperaccumulators is deposited in non-photo-
synthetic tissues such as trichomes and epidermal tissues for detoxification [61], but the
underlying molecular mechanisms are unknown. Because no genome sequences are available
for most of theseMn hyperaccumulators, and there are also nomutant resources, it is difficult to
study the molecular mechanisms of Mn hyperaccumulation in these species. However, recent
rapid advances in sequencing technologies such as RNA-seq may help to elucidate the
mechanisms underlying hyperaccumulation. For example, in Noccaea caerulescens, a cad-
mium (Cd) hyperaccumulator, it was found that the detoxification of Cd is achieved by
increasing the copy numbers of a tonoplast-localized Cd2+ [347_TD$DIFF] transporter gene, NcHMA3 [62].
It would be interesting to investigate in future whether similar mechanisms are present in
Mn-hyperaccumulator species. Because both Mn deficiency and toxicity are limiting factors for
crop production in agriculture, for the future a better understanding of Mn homeostasis in plants
will help to improve Mn use efficiency and/or Mn tolerance of crops on problem soils such as
alkaline or reducing soils.
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