吴华勇

更改您的封面图片
更改您的封面图片

博士,副研究员
hywu@issas.ac.cn

这个用户的账号状态是 批准

该用户还没有提供任何信息到他的个人资料。

华中农业大学农业资源与环境专业,农学学士学位(2004.09–2008.06)

华中农业大学土壤学专业,农学博士学位(2008.09–2014.12)

中国科学院南京土壤研究所,助理研究员(2015.05–2020.05)

中国科学院南京土壤研究所,副研究员(2020.06–至今)

1. 国家自然科学基金面上项目,41977003,红壤关键带深部硝态氮的累积机制和来源解析,2020/01-2023/12,主持
2. 国家自然科学基金青年科学基金项目,41501228,海南岛玄武岩风化壳微生物的垂直分布及对矿物风化的驱动机制,2016/01-2018/12,主持
3. 中国科学院南京土壤研究所“一三五”和领域前沿项目,ISSASIP1625,亚热带典型风化壳中微生物的垂直分布及风化作用机制,2016/01-2018/12,主持
4. 公安部物证鉴定中心协同创新工作项目,2016XTCX03,不同地区土壤物证理化检验特征指标及数据研判方法研究,2016/12-2017/12,主持
5. 国家自然科学基金国际(地区)合作与交流项目,41571130051,红壤关键带土壤风化与形成的关键过程、速率及其驱动机制,2016/01-2019/12,课题负责人
6. 国家重点研发计划项目课题,2018YFC1801806,浸矿场地污染防治技术体系与环境发展战略研究,2018/12-2022/11,骨干
7. 国家重点研发计划项目课题,2018YFC1800104,污染场地时空分布与风险预测研究,2018/12-2022/11,骨干
8. 国家第二次青藏高原综合科学考察研究项目土壤类型调查与制图子专题,2019QZKK0306,2019/11-2022/10,骨干

  1. Wu, H.-Y., Song, X.-D., Liu, F., Zhao, X.-R., Zhang, G.-L. Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China. Catena, 2020, 192: 104589.
  2. Yang, S.-H., Wu, H.-Y.*, Song, X.-D., Dong, Y., Zhao, X.-R., Cao, Q., Yang, J.-L., Zhang, G.-L.* Variation of deep nitrate in a typical red soil Critical Zone: Effects of land use and slope position. Agriculture, Ecosystems and Environment, 2020, 297: 106966.
  3. Wu, H.-Y., Adams, J.-M., Shi, Y., Li, Y.-T., Song, X.-D., Zhao, X.-R., Chu, H.-Y. Zhang, G.-L. Depth-dependent patterns of bacterial communities and assembly processes in a typical red soil Critical Zone. Geomicrobiology Journal, 2020, 37: 201-212.
  4. Wu, H.-Y., Song, X.-D., Zhao, X.-R., Peng, X.-H., Zhou, H., Hallett, P.D., Hodson, M.E., Zhang, G.-L. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone. Geoderma, 2019, 337: 1175-1185.
  5. Wu, H.-Y., Song, X.-D., Zhao, X.-R., Zhang, G.-L. Conversion from upland to paddy field intensifies human impacts on element behavior through regolith. Vadose Zone Journal, 2019, 18: 190062.
  6. Huang, Q.-Y., Wu, H.-Y., Peng, C., Fein, J.B., Chen, W.-L. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Scientific Reports, 2015, 5: 16857
  7. Wu, H.-Y., Chen, W.-L., Rong, X.-M., Cai, P., Dai, K., Huang, Q.-Y. Adhesion of Pseudomonas putida onto kaolinite at different growth phases. Chemical Geology, 2014, 390: 1-8.
  8. Wu, H.-Y., Chen, W.-L., Rong, X.-M., Cai, P., Dai, K., Huang, Q.-Y. Soil colloids and minerals modulate metabolic activity of Pseudomonas putida measured using microcalorimetry. Geomicrobiology Journal, 2014, 31: 590-596.
  9. Wu, H.-Y., Chen W.-L., Rong X.-M., Cai P., Dai K., Huang Q.-Y. In situ ATR-FTIR study on the adhesion of Pseudomonas putida to Red soil colloids. Journal of Soils and Sediments, 2014, 14: 504-514.
  10. Wu, H.-Y., Jiang, D.-H., Cai, P., Rong, X.-M., Dai, K., Liang, W., Huang, Q.-Y. Adsorption of Pseudomonas putida on soil particle size fractions: Effects of solution chemistry and organic matter. Journal of Soils and Sediments, 2012, 12: 143-149.
  11. Wu, H.-Y., Jiang, D.-H., Cai, P., Rong, X.-M., Huang, Q.-Y. Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces, 2011, 82: 147-151.